
High Performance
in

Numerical Linear Algebra
James Demmel

EECS and Math Depts.
CITRIS Chief Scientist

UC Berkeley

5 May 2003

Outline

• National Academy Committee to Study the
Future of Supercomputing (FOSC)

• Technology Trends and Methodology
• Dense Linear Algebra
• Sparse Direct Solvers for Ax= b
• Automatic Performance Tuning of Sparse Kernels
• Sparse Iterative Solvers for Ax=b

Future of Supercomputing (FOSC)
• “The committee will assess the status of supercomputing in the United States,

including the characteristics of relevant systems and architecture research in
government, industry, and academia and the characteristics of the relevant
market. The committee will examine key elements of context--the history of
supercomputing, the erosion of research investment, the needs of government
agencies for supercomputing capabilities--and assess options for progress. Key
historical or causal factors will be identified. The committee will examine the
changing nature of problems demanding supercomputing (e.g., weapons
design, molecule modeling and simulation, cryptanalysis, bioinformatics,
climate modeling) and the implications for systems design. It will seek to
understand the role of national security in the supercomputer market and the
long-term federal interest in supercomputing. An interim report will be
delivered July, 2003. The committee's work will culminate in a report of its
assessment, including recommendations, which will be disseminated in
relevant segments of government, industry, and the academic research
community.”

FOSC Membership

• Sue Graham – UCB
– Cochair

• Marc Snir – UIUC
– Cochair

• William Dally – Stanford
• James Demmel – UCB
• Jack Dongarra – UTenn
• Ken Flamm – UT Austin
• Mary Jane Irwin – Penn St
• Charles Koelbel – Rice

• Butler Lampson - Microsoft
• Robert Lucas - ISI
• Paul Messina – ANL
• Jeffrey Perloff – UCB
• William Press – LANL
• Albert Semtner – Naval PGS
• Scott Stern – Northwestern
• Shankar Subramaniam – UCSD
• Lawrence Turbell – Eagle Alliance
• Steven Wallach – Chiaro Networks

www7.nationalacademies.org/cstb/project_supercomputing.html

FOSC Status

• First Meeting – March 2003
• Currently information gathering
• Interim report – July 2003
• Final report: end of 2004

Tech Trends & Methodology
• Performance depends on

– Maximum Flop rate
– Memory latencies and bandwidths
– Network latencies and bandwidths

• The Flop rate is growing faster than the other
quantities
– Latencies improving most slowly
– Moving to Grid makes things worse

• Methodology
– Develop performance models
– Plug tech trend lines into models
– Predict scalability, identify bottlenecks
– Fix bottlenecks or find new algorithms
– Evaluate architectural designs …

• Work in progress…

Winner of TOPS 500, by year

.13M6768.31.28Intel Paragon
XP/S MP

1995
.10M2048.61.3.37Hitachi CP-PACS1996

.24M91521.83.61.3ASCI Red, Intel
Ppro, 200 MHz

1997

.43M58083.91.62.1ASCI Blue,
IBM SP 604E

1998

.36M 96323.21.12.4ASCI Red,
Intel PII Xeon

1999

.43M742411.12.14.9ASCI White, IBM
SP Power 3

2000

.52M742411.11.57.2ASCI White, IBM
SP Power 3

2001

1.04M510440.84.935.6Earth System
Computer, NEC

2002

NNum
Procs

Peak
Tflops

Factor
faster

TflopsMachineYear

Source: Jack Dongarra (UTK)

End-to-end message latencies are
not improving (much)

Latency (usec)

nCube/2

nCube/2 CM5

CM5 CS2

CS2

SP1
SP2
ParagonT3D

T3D
SPP

KSRSPP
Cenju3

T3E

T3E

SP-Power3

Quadrics
Myrinet

Quadrics
1

10

100

1000

1988 1990 1992 1994 1996 1998 2000 2002

Source: K. Yelick (UCB), C. Iancu (NERSC)

Software Overhead is a culprit

Source: K. Yelick (UCB), C. Iancu (NERSC)

ScaLAPACK
A Parallel Distributed

Dense Linear Algebra Library

11

ScaLAPACK Team
• Susan Blackford, UT
• Jaeyoung Choi, Soongsil U
• Andy Cleary, LLNL
• Ed D'Azevedo, ORNL
• Jim Demmel, UCB
• Inder Dhillon, UCB

http://www.netlib.org/scalapack

• Jack Dongarra, UT/ORNL
• Sven Hammarling, NAG
• Greg Henry, Intel
• Osni Marques, NERSC
• Antoine Petitet, UT
• Ken Stanley, UCB
• David Walker, Cardiff U
• Clint Whaley, UT

scalapack@cs.utk.edu

• Christof Voemel
CERFACS -> UCB

Possible Data Layouts

• ScaLAPACK supports all layouts
• 2D block cyclic recommended, for load balance and BLAS3

1D blocked 1D cyclic

1D block cyclic 2D block cyclic

Parallelism in ScaLAPACK
• Level 3 BLAS block

operations
– All the reduction routines

• Pipelining
– QR Iteration, Triangular

Solvers, classic factorizations

• Redundant computations
– Condition estimators

• Static work assignment
– Bisection

• Task parallelism
– Sign function eigenvalue

computations

• Divide and Conquer
– Tridiagonal and band

solvers, symmetric
eigenvalue problem and
Sign function

• Cyclic reduction
– Reduced system in the band

solver

ScaLAPACK Performance Models (1)
ScaLAPACK Operation Counts

ScaLAPACK Performance Models (2)
Compare Predictions and Measurements

(LU)

(Cholesky)

Making the nonsymmetric
eigenproblem scalable

• Axi = λi xi , Schur form A = QTQT

• Parallel HQR
– Henry, Watkins, Dongarra, Van de Geijn
– Now in ScaLAPACK
– Not as scalable as LU: N times as many messages
– Block-Hankel data layout better in theory, but not in ScaLAPACK

• Sign Function
– Beavers, Denman, Lin, Zmijewski, Bai, Demmel, Gu, Godunov,

Bulgakov, Malyshev
– Ai+1 = (Ai + Ai

-1)/2 → shifted projector onto Re λ > 0
– Repeat on transformed A to divide-and-conquer spectrum
– Only uses inversion, so scalable
– Inverse free version exists (uses QRD)
– Very high flop count compared to HQR, less stable

The “Holy Grail” (Parlett, Dhillon, Marques)
Perfect Output complexity (O(n * #vectors)), Embarrassingly parallel, Accurate

To be propagated throughout LAPACK and ScaLAPACK

Making the symmetric eigenproblem
and SVD scalable

Holy Grail Preliminary Results

PMR3 DC QR BX
0

100

200

300

400

500

600

700

800

methods

ti
m

e
 i
n

 s
e

c
s

matrix size = 9,000; random distribution; 16 processors;

Red
Back
EIG

•Dhillon, van de Geijn, Bientinesi
•Buffalo CCR Linux Cluster

•300 dual P4 nodes + Myricom
•PRM3 = PLAPACK Holy Grail
•DC = ScaLAPACK D&C
•QR = PLAPACK QR
•BX = ScaLAPACK Bis+Invit
•Best PRM3 results so far

•64 procs, n = 64K
•Reduction = 11K secs
•Evals = 390 secs
•Evecs = 50 secs
•Backtrans = 3K secs

N = 9000
Procs = 16

8600secs

PRM3 DC QR BX

ScaLAPACK
Summary and Conclusions

• “One-sided Problems” are scalable
– LU (“Linpack Benchmark”)
– Cholesky, QR

• “Two-sided Problems” are harder
– At least half BLAS2, not all BLAS3

• Better reduction routines for SVD (Howell & Fulton, Lang & Grosser)
– Eigenproblems, SVD (Holy Grail coming…)

• Christof Voemel to join team as soon as visa processed…

• Narrow band problems hardest
– Solving and eigenproblems
– Galois theory of parallel prefix

• www.netlib.org/scalapack

Parallel Distributed
Sparse Gaussian Elimination

Xiaoye Li
Laura Grigori
Jason Riedy

Phases of Sparse Direct Solvers

• Ordering
– Choose Pr and Pc, Set A’ = Pr*A*Pc

T

– Maximize sparsity, parallelism
– NP-hard, so must approximate

• Symbolic factorization
– Compute data structures for L and U where A’=L*U

• Numeric factorization
– Compute L and U
– May need to further permute or modify A’ (pivoting)
– Usually the bottleneck

• Triangular solve
– Solve A’x’ = LUx’ = b’ by substitution, x’ and b’ permuted

“Easy case”: When A = AT > 0
• Cholesky, stable for any Pr = Pc

– Can choose Pr just for sparsity and parallelism
• All phases can be parallelized
• PSPASES and WSSMP

– Joshi, Karypis, Kumar, Gupta, Gustavson
– Sub (elimination) tree to sub-cube mapping

• Performance model 1
– Matrix from 5 pt Laplacian on n x n (2D) mesh, Nested dissection
– N = n2

– Parallel time = O(tf N3/2 / P + tv (N / P1/2 + N1/2 + P log P))
• Performance model 2

– Matrix from 11 pt Laplacian on n x n x n (3D) mesh, Nested dissection
– N = n3

– Parallel time = O(tf N2 / P + tv (N4/3 / P1/2 + N2/3 + P log P))

Scalability of WSSMP on SP3 for n x n x n mesh
• 128 node SP3 with 2-way SMP 200 MHz Power3 nodes
• Scale N2 = n6 with P for constant work per processor
• Performance model 2 says efficiency should drop – it does
• Up to 92 Gflops

Hard case: General A
• Arbitrary Pr , Pc may lose stability

– Usual partial pivoting solution has too many small messages
– Can we still scale as well as Cholesky?

• MUMPS (Amestoy, Duff, L’Excellent)
– Multifrontal, threshold pivoting
– Parallelism from E-tree and 2D blocking of root
– Permute, scale A to maximize diagonal: DrPADc = A’

• Reduces fill, deferred pivots

• SuperLU (Li, Demmel)
– Right looking, static pivoting + iterative refinement

• Static pivoting => similar techniques as Cholesky available
– Permute and scale A as above

• critical for stability
– Replace tiny pivots by √ε ||A||
– Parallelism from 2D block cyclic layout

• Only numeric phases are parallel so far

SuperLU Examples

4 16 64 128 256 512
0

20

40

60

80

100

120

T3E Processors

Se
co

nd
s

Factorization Time

BBMAT
ECL32
TWOTONE

8.011.9M1.22M120,750.43Circuit sim.TWOTONE
68.442.7M.38M51,993.93Device sim.ECL32

31.240.2M1.77M38,744.54Fluid flowBBMAT
GFlopsNnz(L+U)Nnz(A) NSymmSourceMatrix

Scalability of SuperLU on n x n x n Mesh
• T3E: Scale N2 = n6 with P for constant work per processor
• Up to 12.5 Gflops on 128 procs
• Similar scalability to Cholesky on same problems

• SP3: n = 100, N = 1M, 49 Gflops (267 secs)

Adoptions of SuperLU
(Shameless Advertising)

• Industrial
– HP (distributed, imminent)
– Matlab, Sun, Boeing (sequential, planned)
– NAG (sequential and multithreaded, planned)
– FEMLAB (sequential, done)
– Python (sequential, done)

• Academic/Lab
– Omega3P (SLAC, accelerator design, imminent)
– Trilinos (Sandia, imminent)
– OpenSees (UCB, NPACI, earthquake simulation, done)
– Dspice (Sandia, circuit simulation, done)
– NIKE (LLNL, done)
– PETSc (ANL, done)
– Hypre (LLNL, done)

Future Work on Sparse Direct Solvers

• Xiaoye Li, Laura Grigori, Jason Riedy
• Parallelize all phases

– Choice of static pivots
– Symbolic factorization
– Triangular solves
– More choices of iterative clean-up schemes

• GMRES, QMR, …
• Extra precision

• Incomplete LU

Sparse Direct Solvers
Summary and Conclusions

• Good implementations of Cholesky and LU
• Can be as scalable as dense case

– Dense isoefficiency: p = c N2

– 3D cube isoefficiency: p = c N4/3

– 2D cube isoefficiency: p = c N
– In all cases, isoefficiency if work = c’p3/2

– In all cases, isoefficiency if space/proc = c’’ or c’’ log p
• More sensitive to latency
• Need more families of large unsymmetric test matrices
• www.nersc.gov/~xiaoye
• “Eigentemplates” www.netlig.org/etemplates for survey

Automatic Performance Tuning
of Numerical Kernels

BeBOP: Berkeley Benchmarking and Optimization

bebop.cs.berkeley.edu

Performance Tuning Participants
• Faculty

– Jim Demmel, Kathy Yelick
• Researchers

– David Bailey (LBL), Parry Husbands (LBL), Xiaoye Li (LBL), Lenny
Oliker (LBL)

• PhD Students
– Rich Vuduc, Yozo Hida, Geoff Pike

• Undergrads
– Brian Gaeke , Jen Hsu, Shoaib Kamil, Suh Kang, Hyun Kim, Gina Lee,

Jaeseop Lee, Michael de Lorimier, Jin Moon, Randy Shoopman, Brandon
Thompson, Rajesh Nishtala, Chris Hsu, Ben Lee

Conventional Performance Tuning
• Motivation: performance of many applications dominated by a few kernels
• Vendor or user hand tunes kernels
• Drawbacks:

– Time consuming, tedious
– Growing list of kernels to tune

• Example: New BLAS Standard
– Hard to predict performance even with intimate knowledge compiler,

architecture knowledge
• Must be redone for new architectures and compilers
• Compiler technology often lags architecture

– Not just a compiler problem:
• Best algorithm may depend on input, so some tuning at run-time.
• Not all algorithms semantically or mathematically equivalent

Automatic Performance Tuning
• Approach: for each kernel

1. Identify and generate a space of algorithms
2. Search for the fastest one, by running them

• What is a space of algorithms?
– Depending on kernel and input, may vary

• instruction mix and order
• memory access patterns
• data structures
• mathematical formulation

• When do we search?
– Once per kernel and architecture
– At compile time
– At run time
– All of the above

Some Automatic Tuning Projects
• PHIPAC (www.icsi.berkeley.edu/~bilmes/phipac)

(Bilmes,Asanovic,Vuduc,Demmel)
• ATLAS (www.netlib.org/atlas) (Dongarra, Whaley; in Matlab)
• XBLAS (www.nersc.gov/~xiaoye/XBLAS) (Demmel, X. Li)
• Sparsity (www.cs.berkeley.edu/~yelick/sparsity) (Yelick, Im)
• Communication topologies (Dongarra)
• FFTs and Signal Processing

– FFTW (www.fftw.org)
• Won 1999 Wilkinson Prize for Numerical Software

– SPIRAL (www.ece.cmu.edu/~spiral)
• Extensions to other transforms, DSPs

– UHFFT
• Extensions to higher dimension, parallelism

• Special session at ICCS 2001
– Organized by Yelick and Demmel
– www.ucalgary.ca/iccs (proceedings available)
– Pointers to other automatic tuning projects at

• www.cs.berkeley.edu/~yelick/iccs-tune

Tuning pays off – ATLAS
(Dongarra, Whaley)

Extends applicability of PHIPAC
Incorporated in Matlab (with rest of LAPACK)

Sparse Matrix Example

• n = 21216
• nnz = 1.5 M
• kernel: SpMV

• Source:
NASA
structural
analysis
problem

Sparse Matrix Example (enlarged submatrix)

• n = 21216
• nnz = 1.5 M
• kernel: SpMV

• Natural 8x8
dense block
structure

Speedups on Itanium 2: The
Need for Search

Reference

Best: 4x2

Mflop/s

Mflop/s

Filling-In Zeros to Improve Efficiency

• More complicated non-
zero structure in general

Filling-In Zeros to Improve Efficiency

• More complicated non-
zero structure in general

• One SPARSITY
technique: uniform
register-level blocking

• Example: 3x3 blocking
– Logical 3x3 grid

Filling-In Zeros to Improve Efficiency

• More complicated non-zero
structure in general

• One SPARSITY technique:
uniform register-level
blocking

• Example: 3x3 blocking
– Logical 3x3 grid
– Fill-in explicit zeros
– “Fill ratio” = 1.5

• On Pentium III: 1.5x
speedup!

Tuning SpMV by Register Blocking

• Store matrix as dense r x c blocks
• Precompute performance in Mflops of dense

A*x for various register block sizes r x c
• Given A, sample it to estimate Fill if A

blocked for varying r x c
• Choose r x c to minimize estimated running

time Fill/Mflops
� Store explicit zeros in dense r x c blocks, unroll

Register-Blocked Performance of SPMV on
Dense Matrices (up to 12x12)

333 MHz Sun Ultra IIi 500 MHz Pentium III

375 MHz IBM Power 3 1.3 GHz IBM Power 4

70 Mflops

35 Mflops

260 Mflops

130 Mflops

110 Mflops

55 Mflops

820 Mflops

460 Mflops

Register-Blocked Performance of SPMV on
Dense Matrices (up to 12x12)

800 MHz Itanium 1 900 MHz Itanium 2

900 MHz Itanium 2 (Intel compiler
flags)

250 Mflops

110 Mflops

1190 Mflops

190 Mflops

1500 Mflop

190 Mflops

Pentium III SpMV speedups

Itanium 1 SpMV Speedups

Itanium 2 SpMV Speedups

Power 3 SpMV Speedups

Power 4 SpMV Speedups

Exploiting Other Kinds of Structure
• Other optimizations for SpMV

– Symmetry (up to 2x speedup)
– Diagonals, bands (up to 2.2x)
– Splitting for variable block structure (1.3x—1.7x)
– Reordering to create dense structure + splitting (up to 2x)
– Cache blocking (1.5—4x)
– Multiple vectors (2—8x)
– And combinations…

• Sparse triangular solve
– Hybrid sparse/dense data structure (1.2—1.8x)

• Higher-level kernels
– AATx, ATAx (1.2—4.2x)
– RART, Akx, …

Multiple Vector Performance

Portion of the Google Matrix: A
Snapshot

Example: Sparse Triangular
Factor

• Raefsky4 (structural
problem) + SuperLU +
colmmd

• N=19779, nnz=12.6 M

Dense trailing triangle:
dim=2268, 20% of
total nz

SpTS Performance: Itanium 1

(See POHLL ’02 workshop paper, at ICS ’02.)

SpTS Performance: Power3

Summary and Conclusions
Automatic Performance Tuning

• Within 20% - 30% of peak for FE matrices
• Further improvements from new structure

– Different data structures
– New kernels

• A symmetric (up to 2x)
• A* multiple vectors (up to 8x)
• AT*A*x (up to 2x)
• …

• Future –
– use model to assess architectures
– generalize to more kernels, embed in HLLs

• bebop.cs.berkeley.edu

Prometheus
A parallel distributed Multigrid

for irregular meshes

Mark Adams, Sandia NL
www.cs.berkeley.edu/~madams

(JD)

Multigrid on Irregular Meshes
• Given fine grid matrix & mesh, coarsen

– Solve recursively, using coarser grid to solve “low frequencies”
– Goal – O(n) algorithm, linear speedup

• Geometric approach (Guillard, Chan, Smith)
– Use Maximal Independent Sets, Delaunay meshing, to get coarse

mesh from fine, using mesh coordinates
– Use standard FE shape functions as restrictor

• Algebraic approach (Vanek, Brezina)
– “Smoothed agglomeration”, no mesh coordinate
– Aggregate strongly connected nodes
– Use rigid body modes to construct prologation

Sample Coarse Grids

Prometheus – Parallel Multigrid Solver for
Irregular FE Problems

•Stiff sphere w/ 17 steel and rubber layers,
embedded in rubber cube; compute crushing
•80K – 56M dof
•Up to 640 Cray T3E processors
•50% scaled parallel efficiency

www.cs.berkeley.edu/~madams

•76M dof solved in 70 seconds on 1920 processor ASCI Red (SC ’01)
•Prize for Best Industrial Appl in Mannheim SuParCup 99

#MG iterations on 1800 PE ASCI Red

Performance on 1800 PE ASCI Red

Total Solve Time on 1800 PE ASCI Red

Conclusions

• Discussed scalability for linear algebra
– Dense
– Sparse Direct
– Sparse Iterative (Multigrid)

• Many algorithms scale well (on model problems)
– Many performance models available
– Better algorithms under development
– Automatic performance tuning helps

• Expect latency to be issue for sparse problems on
very large machines

